Genomics of foam cells and nonfoamy macrophages from rabbits identifies arginase-I as a differential regulator of nitric oxide production.

نویسندگان

  • Anita C Thomas
  • Graciela B Sala-Newby
  • Yasmin Ismail
  • Jason L Johnson
  • Gerard Pasterkamp
  • Andrew C Newby
چکیده

OBJECTIVE Conversion of macrophages to foam cells is a critical step in the initiation and progression of atherosclerosis. We sought to identify genes differentially regulated in foam cells, since these are likely to include new targets for intervention. METHODS AND RESULTS We used suppression subtraction hybridization to compare foam cells and nonfoamy macrophages isolated from subcutaneous granulomas of rabbits fed a cholesterol-rich or normal chow diet and confirmed upregulation of 3 genes, including matrix metalloproteinase-12 (mRNA 2.0-fold, P<0.005; protein 3.9-fold, P<0.03). Arginase-I mRNA showed the biggest decrease among 11 downregulated genes in foam cells (2.7-fold, P<0.001) and was accompanied by significantly reduced arginase enzymatic activity (60-fold, P<0.01). Arginase-I competes for substrate L-arginine with nitric oxide synthase and consequently nitric oxide production was significantly increased (3-fold, P<0.02) in foam cells compared with nonfoamy macrophages despite no difference in nitric oxide synthase isoenzyme expression. We validated upregulation of matrix metalloproteinase-12 and downregulation of arginase-1 in foam cells of rabbit and human atherosclerotic plaques. CONCLUSIONS Our study identified several differentially expressed genes in foam cells and nonfoamy macrophages derived from live rabbits. The altered pattern of gene expression in foam cells is likely to influence atherosclerosis formation and stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages

Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...

متن کامل

Effect of Cell Wall, Cytoplasmic Fraction and Killed-Candida albicans on Nitric Oxide Production by Peritoneal Macrophages from BALB/c Mice

Objective(s) The fractions of Candida albicans have been used as an immunomodulator. The present work assessed the effect of different fractions of C. albicans on nitric oxide (NO) production by mice peritoneal macrophages. Materials and Methods Cell wall and cytoplasmic fractions of C. albicans ATCC 10321 strain were extracted. Mice peritoneal macrophages were purified and cultured. Differen...

متن کامل

Arginase Activity and Its Effects on Pathogenesis of Leishmania

  Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...

متن کامل

Arginase modulates nitric oxide production in activated macrophages.

In macrophages and many other cell types,l-arginine is used as a substrate by both nitric oxide synthase (NOS) and arginase to produce nitric oxide (NO) and urea, respectively. Because the availability ofl-arginine is a major determinant for NO synthesis in the activated macrophage, we hypothesized that NO production may be reduced by arginase via depleting the common substrate in this cell typ...

متن کامل

Kinetics of Nitric Oxide Production and MTT Reduction by HSV-1 Infected Macrophages

Background: Macrophages have important role in defense against Herpes Simplex Virus type-1 (HSV-1). The present study was performed to determine the viability and nitric oxide (NO) production by HSV-1 infected mouse peritoneal macrophages (HIM). Method: The viability of macrophages was evaluated using MTT reduction assay and the production of nitrite using Griess method. Results: The ability of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 27 3  شماره 

صفحات  -

تاریخ انتشار 2007